
harmonic of supersaturation perturbation; A, amplitude of highly nonlinear self-excited 
oscillations; G, Gibbs number; mk, k-th moment of crystal-size distribution function. 
The index o signifies that the corresponding quantity is evaluated on the surface of 
neutral stability; angle brackets denote time average; the asterisk denotes complex con- 
jugates. 
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VIBRATIONS AND NONUNIFORM HEATING OF A SHAFT IN A RADIAL BEARING 

Yu. A. Buevich and M. I. L'vov UDC 532.516 

The article examines the problem of vibrations of the axis of a shaft in a 
radial bearing due to the imbalance of the system as a result of nonuniform 
heating of the shaft. 

Trouble-free operation, longer life, and reliability of turbine rotors and rotating 
units of other installations require careful balancing with the object of minimizing the 
level of perturbing forces and moments acting on the plant. In practice it is impossible 
to eliminate these fluctuations completely; as a result, the axis of rotation, and also the 
axes of bearing shafts do not take up a strictly fixed position, instead they vibrate [i]. 
If the random effects on the system are negligibly small, then to such vibrations there 
correspond periodic motions of the point of intersection of the shaft axis with the plane 
of the bearing along some closed path, usually close to elliptical [2]. When the regime 
of rotation changes, it is possible that the characteristic linear dimension of the path 
(the vibration amplitude) abruptly changes; this prevents the normal functioning of fric- 
tion units and may even lead to their destruction, or even to the breakdown of the instal- 
lation itself or some of its parts [3]. It is therefore of interest to find the causes 
of such vibrations and the dependences of their characteristics on the physical and 
regime parameters. 

One of the causes of imbalance of some plant (which would be perfectly balanced under 
isothermal conditions) may be the bending of shafts in bearings due to their thermal 

A. M. Gor'kii Ural State University, Sverdlovsk. Translated from Inzhenerno-Fizi- 
cheskii Zhurnal, Vol. 54, No. 2, pp. 295-304, February, 1988. Original article submitted 
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F i g .  1. S c h e m a t i c  i l l u s t r a t i o n  o f  t h e  s h a f t  

in a bearing. 

warping when they are heated nonuniformly over their section. If the shaft axis vibrates 
regularly with the notational frequency of the shaft, then, as follows from the theory 
presented below, certain parts of its surface will on an average exist under conditions 
that are most favorable for their heating by heat liberated in the layer of lubricant by 
viscous dissipation. This leads to nonuniform deformation of the shaft as a result of 
thermal expansion and its warping, which causes imbalance of the entire rotating system and 
finally gives rise to a centrifugal force acting on the shaft. This last is the cause of 
vibrations of the shaft relative to some mean position corresponding to ideal balance. 
Such a pattern is in fairly good agreement with many observed facts [4]. 

We emphasize that when the vibrations of the shaft are not synchronized with its rota- 
tion, the above-mentioned effect of nonuniform heating of the shaft and its deformation 
does not take place. Regardless of the obvious nonuniformity of the steady-state tempera- 
ture distribution in the layer of lubricant of the loaded bearing (which may be increased 
even more when the viscosity of the liquid decreases substantially with rising tempera- 
ture), all parts of the surface of the rotating shaft are subjected to exactly the same 
conditions since they in turn come into contact with all the parts of the layer of lubri- 
cant in the course of each period. 

Strict quantitative description requires the simultaneous solution of mutually con- 
nected nonlinear problems of hydrodynamics, thermal conductivity, and thermoelasticity in 
regions of complex geometry with the imposition of conditions, many of which are determined 
entirely by the actual organization of the friction units, design features of the plant, 
etc. [5]. To obtain the reviewed results of a fairly general nature, we deal below solely 
with a simplified model of an ideal radial bearing; within its framework we can then 
divide and linearize various boundary-value problems. Such results are important in the 
sense that they make it possible to point out fundamental methods of analyzing the above- 
mentioned phenomena. 

The Effect of Shaft Vibrations on Flow in the Layer of Lubricant. We deal with a 
radial bearing whose cross section is illustrated in Fig. I. In investigating the flow in 
the layer of lubricant we neglect the dependence of the viscosity of the liquid on the 
pressure and temperature, and we use Reynolds' ordinary approximation, i.e., we take it 
that h/R ~ d/R << 1 and ~RH/~ << I and we take into account only the terms of zeroth order 
with these small parameters. Then we have the equations [6]: 

1 Op. 0 2 u  O p  = 0 ,  1 Ou= __0~ = 0  (1)  
R O~ = ~ Or - - - ? '  0---7 R O~ + Or 

( i t  i s  e a s y  t o  v e r i f y  t h a t  t h e  s m a l l n e s s  o f  t h e  r a t i o  h /R  a l s o  makes  i t  n o t  p o s s i b l e  t o  
d i s t i n g u i s h  b e t w e e n  t h e  c o o r d i n a t e s  r ,  ~ and r ' ,  ~', a s s o c i a t e d  w i t h  t h e  p o i n t s  0 and 
O' respectively, in Fig. I) 

Assume that the axis of the shaft oscillates so that the coordinates of point O are 
equal to x(t), --co + y(t), where:co is the eccentricity corresponding to the unperturbed 
force Po applied to the shaft and directed along the X-axis. We take it that x and y are 
small compared with co; therefore the following parameters (see Fig. i) are also small: 

~1 = arcsin ( x / e )  = x / e o ,  e l  = e - -  e o = - -  9 .  (2) 
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For the sake of convenience we multiply all small values additionally by the factor 
e which at the end of the calculations has to be put equal to unity. Confining ourselves 
to the analysis of the effects of distortions of the first order, we retain in the calcula- 
tions solely the terms of zeroth and first order of powers of e. 

The thickness of the clearance between the shaft and the bearing is written with 
sufficient accuracy in the form 

h = d --{- e cos (~ + e%) = ho + eh~, 

ho = d + ~ cos ~, h~ = - -  x sin ~ - -  y cos % 

The tangential and the normal components of the speed of the points on the shaft 
surface can be represented as follows: 

(3) 

( _ ~  dy sin cp), ot = f ir  + 8 cos q~ - -  dt 

( ~ t  dy cosq~) f l = f l o + e f ~ ,  (4) on = e sin q~ --}- dt ' 

(as positive we took the directions of unperturbed rotation of the shaft and of the vector 
of the normal that is the inner one in relation to the layer of lubricant). 

The solution of the first equation (i) with the conditions u = vt(r = R) and u = 0 
(r = R + h) has the form 

l O P ( n _ h ) n + v t ( 1  - n )  
u =  2~R Oq~ ~ , n = r - - R .  (5) 

Hence, taking (4) into account, we obtain for the flow rate in the layer of lubricant that 

Q --: ! udn ---- 12I~R 0r + --if- f i r  + e c~ dYsinq~)]  " a t  (6) 

On the other hand, from the last equation (i) follows: 

1 OQ .... . .  wln=nq-wl~=o = v., 
R O~ 

i.e., with (4) taken into account, we have 

where Q, (or h,) plays the role of integration constant. 

~2Rh. 
(7) 

Equating (6) and (7), we obtain an equation for the pressure in the layer of lubricant 
(again we neglect terms of the order h/R) 

Op - 6~R2 [~(h__h.)q_ 2e (y_~coscp dy sinep)], (8) 
Oq~ h 3 dt 

from which follows 

p const+61xRJ(Js--h.J~)fl+2e(Jc,~-~--J~,3dx dg~dt ]]" 

Here and below we introduce the designations: 

~ d~o, ffcoscpdq~ ~ sincpdq~ 
Jn ==- .o --hn " die,n= 0 hn , ]s,n= o hn ' 

{L.., L~,~, L~,~} = {J~, J~,~, J~,.}~=2a. 

(9) 
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The value of h, is found from the requirement of periodicity p from (9) as functions 
of ~ with the period 2~, from which it follows that 

L~ 2e L~,a dx 
h ,  = - ~ a  + ~ L~ d t '  ( 1 0 )  

which finally closes the formulas presented above. We note that in these formulas the 
terms with e due to perturbations are not only contained explicitly but also through the 
magnitude h determined in (2). For e = 0 the obtained solution coincides with the classi- 
cal one [6]. This solution makes it possible to describe flow in the layer of lubricant 
for any arbitrary movement of the shaft axis with small x and y. 

Dynamic Response of the Shaft to the Perturbation of the Force and Moment Applied to Ig~ 
We will now deal with the problem whose solution enables us to correlate the characteristics 
of the path of the shaft axis (i.e., the functions x(t) and y(t)) with the perturbations 
Px and Mt of the force and the moment acting on the shaft from the side of the external 
sources. Introducing the mass m and the moment of inertia I in the calculation per unit 
length of the shaft (these values, after all, characterize not only the shaft but all the 
parts rotating with it), we write the equations of Newton's second law 

md2x/dt 2 = P l x + F l x ,  m#y/dt  2 = Pav+F~v, Id~l l~  = M I + N 1 ,  (ll) 

where Ft and Nx are small fluctuations of the force and moment acting on the shaft from the 
side of the layer of lubricant relative to their unperturbed values (Fox = --Po, Foy = 0, 
No =--Mo. For determining these values, and consequently also for closing the system (ii) 
we use the results of the preceding chapter. With the same accuracy as before (i.e., 
neglecting values of the order of h/R), taking (1), (4), (5), and (8) into account, we 
obtain the expressions for the stresses acting on the shaft surface: 

Cr~ = ~ (Ou/On)n=o == - -  ~R~ 4 h - - 3 h ,  6e~R ( dx d~ ) 
h ~ ~ -d-7 - c ~  s i n ~  , 

a~r = - -  p + z~  ~ n=o = - -  p - -  v~ Oq)/n=o = - -  p 

(here again we take the smallness of h/R into account). 

The moment of forces acting on unit shaft length and induced by the viscous stresses 
is equal to 

2~ 
dx 

N = No -[- eNj = R 2 f at~dq~ = N* - -  6~R3Lc,2 
o d l '  

( 1 3 )  

N* = - -  ~R a (4L 1 - -  3h,L~) Q. 

Using (8), we obtain with the same accuracy as before expressions for the components 
of the force acting on the shaft from the side of the layer of lubricant, calculated per 
unit shaft length" 

2 i 26i Op - - F *  dx Fx = Fox + 8F~x = R , (a~ sin q~ + a ~  cos q)) dcp = - -  R ~ cos qDdq) - -  x - -  1 2e~R3K~ --~,  
0 

F* : - -  6~Ra (L~, 2 - -  h,Le, a) f2, 

2 i 2~ Op Fv = eF1 u = R (a~ r cos q) - -  o'~q~ sin q~) dq) = R [ sin qo dq0 = 
0 " o 

= F* - 12e~R*& a y ,  F* = 6 ~  (L~,~ - -  h ,L ,  ~) ~.  ( 14 )  
dt 

Thus the values of (13) and (14) are represented in the form of the sums of two 
terms. The second term depends on the speed atwhich the shaft axis moves. The first 
terms, marked by an asterisk on top, have by their structure the same accuracy as in the 
corresponding unperturbed problem if we replace in the latter eo and ~o by e and ~, re- 
spectively, and take into account that the direction of the force F ~ is determined by the 
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angle ~, , which is equal to z~/2--fpz (and not ~/2 as in the unPerturbed problem). With 
the adopted accuracy we therefore have: F*x = F* cosq0z--- F*, F* ~ F'sinai---- F*~z . The ex- 
pressions forN* and F* are [6]: 

d z + 2e 2 
N* = - -  M*, M* ---- 4zip, Ran ( 2d2 + e~) _ l / ~ e Z  , 

F* = - -  P*, P* -- 12~R3f~ e 
(2d ~ + e ~) ] / ~ - - e ~  

(15) 

Taking into account the smallness of the perturbations, and with a view to the above- 
said, we obtain: 

] 
\ Of~ ]o \ - - ~ e  }oe l l '  

( oP*  . . + ( o P *  
F* . . . .  P o - - e [ \ - - - - ~ ]  ~ k Oe )oe*] ' 

F* = - -  8Po(Px, 

where the factor e was introduced in its adopted quality, and the subscript zero denotes 
that the corresponding derivatives are calculated in the unperturbed state (i.e., for 

= ~o and e = eo). 

From (13), (14), and (16), with (2) taken into account, we finally obtain: 

dx / a M *  ( a M * ~  n,. 
N ~ = - - 6 ~ R 3 ( L c ' 2 ) ~  \ de o Y - - ~  On lo 

--~dx \(0t)*)0e ( 0 P * ' ~  / Fxx = -- 12~R s (Kc)o + y - -  | fl,, 
. 0  0 

F~= Po__x__I2BR~(K~) ~ dy 
eo dt 

In (14) and (17) we used the designations: 

(16) 

(17) 

2n cosZq~ d 2n sin~q~ d- = j" --V- = 3 --V- 
0 0 

and the subscript zero denotes again that the corresponding values are calculated for the 
unperturbed state. 

When we substitute (17) into (ll), we obtain an inhomogeneous linear system of ordinary 
differential equations whose full order is equal to seven. Here the right-hand parts 
Pxx, Pxy, and Mz have to be regarded as known functions Of time. 

If we are concerned solely with the effect of the centrifugal force due to imbalance, 
then with the adopted accuracy 

P1x + iPzv = Ae ~nt = Ae ~'~~ MI = O, (18) 

where A is the complex amplitude which, after all, can be made reaLby the appropriate 
choice of the instant from which time is measured. Finding the solution of system (ii) in 
the form 

x -- Re (BxeZn~t). 9 = Re (Bvei~~ ~z =..Re (Bne j. 

we can easily obtain by the standard method a system of linear algebraic equations whose 
solution expresses the complex amplitudes Bx, By, and Bfl as magnitudes that are proportional 
to A from (18). When we furthermore eliminate the magnitude flot from the expressions for 
x and y, we easily obtain the equation of the path of point O in Fig. 1 which in the approx- 
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imation under consideration is an ellipse. The parameters of this ellipse (its principal 
semiaxes and the angle of slope of one of them to some coordinate axis) can then be easily 
determined from the mentioned equation. 

The corresponding calculations are elementary but very cumbersome, and therefore we 
do not present them here. We note, however, that the elliptical paths of the shaft, 
observed directly on the screen of the oscillograph for a number of model and industrial 
systems with known centrifugal force, are in perfectly satisfactory agreement with the 
paths obtained theoretically on the basis of the above-explained linear theory. 

We note that the importance of the system (ll) with the magnitudes F~x, Fzy~ Nz from 
(17) is not confined to the case of nonuniformity being due to perturbations in the form 
of (18). Thus the homogeneous system (ii) is useful for the utilization of the hydrody- 
namic stability of a radial bearing [7]. Yet in distinction to a number of known approaches 
to the mentioned problem, with the theory developed by us there is no need to introduce a 
priori the coefficients of rigidity, compliance, friction of the system under consideration, 
since from (17) there follow perfectly concrete notions concerning these coefficients. The 
inhomogeneity of system (ii) makes it possible to describe the dynamic response of the 
radial bearing to arbitrary small external perturbations of the force and moment. In 
particular, PI and Mz can be random functions of time with known spectral characteristics. 
Then with the aid of the correlation theory of steady-state random processes it is easy to 
find from (ii) and (17) the spectral characteristics of the magnitudes x, y, and ~t, i.e., 
to describe the response of the radial bearing to stochastic excitation, which is a very 
important problem. 

In the context of the present work it is important that the obtained results make it 
possible to correlate x, y, and flz, and consequently also perturbations of flow in the 
layer of lubricant, with the amplitude A of the centrifugal force. Below we will use the 
alternative notions 

x = C~ cos (Oot + ~ ) ,  V = C~ cos (~ot + ~y), Q~ = Cn cos (~ot + ~ ), (z9)  

regarding the coefficients C and the phase angles B as known magnitudes that depend on the 
physical and regime parameters of the system. 

Temperature Distribution over the Section of the Shaft. The temperature fields in 
the shaft, in the layer of lubricant, and in the bearing are determined by the solution of 
the problem of convective heat conduction for these regions under conditions of continuity 
of the temperature and of the normal component of the heat flux on their boundaries. In 
the layer of lubricant there occurs heat release caused by viscous energy dissipation, with 
a density that is approximately equal to g = (~/2)(Su/~n) 2. In formulating the mentioned 
problem we also have to take into account the existence of heat sinks; this implies that 
we have to go to some extent beyond the limits of the plane problems of the type dealt with 
above. In limit situations heat may be removed through the shaft (and possibly also through 
the bearing) or from the layer of lubricant together with the lubricant itself. In the 
former case the decisive role is played by molecular heat conduction in the direction normal 
to the plane of the drawing~ in the latter case by the flow of liquid in this direction. 
In both cases the result is very strongly dependent on design features of the system, and 
it can hardly be expected that conclusions of sufficiently general nature applicable to 
different systems will be obtained. For the sake of determinacy we present below only the 
simplest model example when the entire heat is removed through the shaft, and the bearing 
is heat-insulated. 

The equation of heat conduction for a shaft in a system of coordinates rotating with 
the shaft (in which the shaft is motionless) is written in the form 

ae I 2~ R 
pc . . . .  ~AO- czO~, 0,~ = -- ~ I Ordrd~, 

Ot ~RZ o b 

where the Laplacian is calculated for the cylindrical coordinates r, ~, where d~ = d~ -- 
fldt, and the introduction of the term ~e m corresponds to one of the possible methods of 
semiempirical description of heat removal to external sinks. 
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On the shaft surface there occur pulsations of temperature and heat flux with frequen- 
cy rio. The depth of penetration,of these pulsations into the shaft is, according to order 
of magnitude, equal to (X/pCfio) x/a, i.e., it is small when the angular frequency of the 
rotation is sufficiently large. It is physically clear that under real conditions the 
influence of such a " skin effect" on the deformation of the shaft is negligibly small. 
It is therefore natural that these pulsations are eliminated from the analysis and that 
time-averaging is carried out in the range from zero to 2W/~o. Denoting by T the tempera- 
ture e thus averaged, we write the equation of heat conduction in the shaft 

p c ~  
23 R 

OT =)~AT--~Tm, T n , :  l bf S T r d r d , . - -  
a t  ~ R  2 �9 

(20) 

To formulate the boundary conditions, we have to examine the convective heat conduc- 
tion in the layer of lubricant. Assuming for the sake of simplification that the Peclet 
number for this layer is small compared with unity (this complements in a natural manner 
the assumption that the Reynolds number for the layer of lubricant is small) and taking 
into account that the bearing is assumed to be heat-insulated, we have 

~,' 0~0' -k- 00' I = O. 
On 2 g = O, - ~ n  ,n=h 

Integrating with respect to n in the interval (0, h), we find from this 

~, OO'[ h 
= .~ gdn = G, 

On l,,=o o 

which determines the heat flux to the shaft surface. We obtain the corresponding boundary 
condition for Eq. (20) by averaging the last relation over time. Thus, 

~, --OT = ~2~ Gdt  = - -  G d % ,  % = ~i + ~o t ,  (21) 
Or r=R 2~ o 2n 

where the argument ~ of the integrand, with adequate choice of the beginning of the mea- 
surement of time, can be represented in ~the form 

t 

r = % -]- ez, z = S f~xdt = Czcos(~ot d- ~z) (22)  
0 

( t h i s  l a s t  r e l a t i o n  f o l l o w s  d i r e c t l y  f r o m  ( 1 9 ) ) .  

We t h e n  c a l c u l a t e  g and G t a k i n g  i n t o  a c c o u n t  t h e  r e l a t i o n s  p r e s e n t e d  a b o v e ;  a s  
before we retain only the principal terms concerning the ratio h/R and the terms not higher 
than of first order of powers of e. Integrating 

g =  T \ O n /  =- '2-  21~R Ocp ' 
with respect to dn in the interval (0, h), taking (4) and (8) into account, we obtain 

h 3 [3 (h - -  h , )  a --}- h21 ~2 a -t- 68 (h - -  h , )  g~ cos.cp - -  dt 

Without loss of accuracy we may write the value of he, determined in (i0), in the 

f o rm  

. h . = h * +  2e [ Lc,s ~ dx L 2 2d(d2--e 2) 
~o ~ L---~-)o d--"~' h**= Ls = 2d'Z-k-e z ' (24)  

and represent the value of G from (23)  in one of the forms 

E dz\, G = G* + e (E,=--d-[dx q_ EudY~_~Goq_e(D~Xq_dt ] Dugq- D z z + E x - ~  q-Eu'dyq-dt z--~-) 

G* ----- l~Rz [3(h - -  h**) 2 + h 2] ~ ,  (25)  
2h a 
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where h** and G* from (24) and (25) depend on e, ~, and h with the same accuracy as the 
corresponding values of h,o and Go in the unperturbed state of the radial bearing depend 
on eo, ~o, and ho [6]. 

It is obvious that 

[\  Oe ]o ex-[- Oa /oa ' -~ , ( - - -~ )oh ' - - e~  (Sln%)z " 

Taking (2), (3), and (22)-(26) into account, after some calculations we obtain for the 
coefficients of the representations in (25): 

(26) 

Go = I*R~ l OG* ~ 

_ ) ( o a , )  ( ( oc* , =--eo sin%, 
Du= \ Oh oC~ Oe /o \ Oh o 

_ _  [ ], 6~Ra (ho - -  h,o) f~o .c~ % \ - -~-8  ] o J E~ = h~ 

" = ( o a * )  
Ev = 6~RZh3 ~ (ho - -  h,o) ~o sin %, Z~ ~, O~ ] o 

h,o = 2d (d z - -  eg) (2d 2 + e~)-L 
(27) 

Retaining the previous designations, we must remember nevertheless that the coeffi- 
cients in (27) are determined not only for the unperturbed state but that the argument ~ 
too, is replaced by g0 , which corresponds to the replacement of ~ by ~0 in the repre- 
sentation of ho from (3). This, in particular, is connected with the appearance of the 
last term in the expansion (26). 

Using the representations for x, y, and z introduced in (19) and (22), we can easily 
reduce G from (25) with the coefficients of (27) to a sum of terms containing as factors 
sin (Q~)t + 9) = sin [%-- (~-- 6)] and cos (~ot~- 6) = cos [%-- (~-- 6)] with different 9. Then, when 
we integrate the obtained expression in accordance with (21), we obtain as a result of 
simple transformations that 

OT ~=R=H+Hccos~+Hssin  % 
"'Or (28) 

where the coefficients H, Hc, and H s are expressed through the integrals of the values of 
(27) with respect to d~o , and also through the amplitudes C and the phase shift angles 

contained in (19) and (22), and they may be regarded as known; these coefficients are too 
cumbersome to be presented here. 

The solution of the steady-state problem (21), (28) is trivial; we have 

~R - -~  r2 - -  2 + (g~ cos ~ + H8 sin ~) -i--' (29) 

from which it can be seen that with nonzero Hc, H s the temperature distribution over the 
section of the shaft is, in fact, not axisymmetric, and thermal deformations therefore 
have to cause bending of the shaft, thus leading to the appearance of an effective cen- 
trifugal force. (In the unperturbed state the situation is completely different: the 
right-hand side of (28) in this case does not depend on 4, and the temperature distribution 
is axisymmetric.) 

The temperature field (29) relates to a simplier special situation. However, the 
general method of obtaining it remains the same in its basic fundamentals, even when the 
problem becomes more complicated in view of the actual features of heat removal in real 
systems. 

To find a correlation between the distribution (29) and the amplitude A of the centri- 
fugal force, we have to solve the problem of thermoelasticity, taking into account the 
existence of other rotating parts coupled with the shaft. It is clear that the result, 
which may be represented formally in the form 

221 



A= f(H, He, Hs), (30) 

yields a transcendental algebraic equation for A because the arguments of the function on 
the right-hand side of (30) are expressed throughthe amplitudes C of the representations 
(19) and (22), and the latter, in their turn, are proportional to A. The solution of this 
equation enables us to express the amplitude of the centrifugal force solely through the 
physical and the regime parameters of the system, and then, by using the methods suggested 
above, to find the characteristics of the oscillating motion of the shaft and the tempera- 
ture distribution in it. The form of the function in (30) depends strongly on the special 
design features of the entire plant, and it has to be determined directly for a real plant. 

In the analysis of flow in the layer of lubricant, in determining the dynamic re- 
sponse to the forces applied to the shaft, in calculating energy dissipation and finding 
the temperature field inside the shaft, we previously ignored completely the dependence of 
the viscosity of the liquid on the temperature. Under certain conditions this dependence 
may even lead to a qualitative change of the very nature of the flow, viz., to the appear- 
ance of a so-called "hydrodynamic thermal shock" [8, 9]. However, in most situations of 
practical importance the mentioned factor leads merely to some changes of the steady flow 
and the steady temperature field in the layer of lubricant which can be estimated with the 
aid of the standard method of the small parameter [5]. 

Thus the newly developed methods make it possible in principle to find a correlation 
between the oscillations of the shaft of a radial bearing and the perturbing force acting 
on it, between the perturbed flow in the layer of lubricant and these oscillations, and 
between the distribution of the shaft temperature and the characteristics of such a flow. 
Closing of the problem of unbalancing (which can be represented as the resultlof a pecu- 
liar thermohydrodynamic unstable system) is effected with the aid of the solution of the 
independent problem of thermoelasticity. Generalizing the results to real systems en- 
tails, after all, very cumbersome and laborious calculations but it does not encounter any 
difficulties of a fundamental nature. 

NOTATION 

A, amplitude of the centrifugal force; B, C, amplitudes of the variables x, y, z; c, 
specific heat; D, E, coefficients determined in (27); d, mean clearance; e, eccentricity; 
F, force acting on the shaft from the side of the layer of lubricant; G, g, functions 
introduced in (21); H, coefficients in (28); h, thickness of the layer of lubricant; h,, 
value of (i0); I, moment of inertia per unit length of the shaft; J, K, L, functions and 
constants determined in the text; M, external moment of forces; m, mass per unit length 
of the shaft;N, moment of forces acting on the shaft from the side of the layer of 
lubricant; n-r--R; P, external force; p, pressure; Q, flow rate of the liquid; R, radius of 
the shaft; r, radial coordinate; T, averaged temperature; t, time; u, w, components of 
speed in the cylindrical system of coordinates; vt, Vn, components of speed on the shaft 
surface; x, y, coordinates of displacement of the axis of the shaft; z, variable introduced 
in (22); ~, heat-transfer coefficient; 8, phase shift angles; s, parameter of order; 8, e', 
temperature in the shaft and in the layer of lubricant, respectively; l, l', thermal 
conductivities of the material of the shaft and of the liquid, respectively; ~, ~, dynamic 
and kinematic viscosity, respectively; ~, stress tensor; % % , angular coordinates in the 
laboratory system; ~, angular coordinate in the system conjugated with the shaft. Sub- 
scripts and superscripts: 0, values relating to the unperturbed state; i, perturbations; 
*, functions whose dependence on the perturbed parameters has the same form as in the 
unperturbed state. 
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RADIANT HEAT TRANSFER 1N A CLOSED SYSTEM OF SEMIOPAQUE BODIES 

SEPARATED BY AN EMITTING AND ABSORBING GAS MEDIUM 

V. P. Gorshenin UDC 536.3 

A radiant heat-transfer problem is solved for a closed emitting system 
bounded by a nonisothermal semiopaque shell with the absorption and 
emission of a nonisothermal gas medium taken into account. 

Analysis [1-4] shows that the solution of radiant heat-transfer problems at this time 
is performed for systems of bodies opaque to thermal radiation. 

The extensive utilization of films and plastics in the construction of modern struc- 
tures evokes the necessity to solve radiant heat-transfer problems for systems of semi- 
opaque bodies relative to thermal radiation. Moreover, the space of these structures is 
filled with a nonisothermal medium emitting and absorbing thermal radiation since tria- 
tomic gases are usually contained therein. The cause of the nonisothermy of the gas space 
is the different temperature of its bounding surfaces. 

We solve the problem formulated in general form first for boundary conditions of the 
first kind. As is known, in this case the temperatures of the body surfaces and the gas 
medium are given in this case. It is required to determine the resultant radiation Qr of 
each of the elements of the emitting system. 

Let us consider a nonisothermal semiopaque shell in which a nonisothermal medium is 
enclosed. In order to make an assumption about the diffuse nature of the emission, we 
divide the shell and the gas, respectively, into n isothermal surfaces and m = n + 1 
isothermal spaces, as is shown in Fig. i. The surfaces and the gas spaces are assumed gray. 

Each of the n surfaces of the closed system has the temperature T i and the following 
integral hemispherical radiation characteristics: el, Ai, D i. The temperature of the 
i-th space of the medium equals Tg i and its integral hemispherical radiation character- 
istics for the temperature Tgj and Tj have the respective values ~giJ, aged, dg~dand ~i,i, 
Agid, Dg~d . Because there are no w particles in the gas-mediumwe consider the 
energy scattering effect not to hold and, therefore, dg, d = l--~d; and Dg~,j = l--Agi,~. 

In connection with the fact that the surfaces and gas spaces are diffuse, we character- 
ize the geometry of the body system by the mean angular coefficients ~j-i, ~gj-~, ~-gT, ~g,~j 
The generalized angular coefficients are here determined by using the expression ~=D~, 
since the transmissivity D is taken out from under the integral. 

According to Fig. 2, the resultant emission for each of the n semiopaque surfaces can 
be represented in the form 

Q r  i = Q i e , ~ -  Qef ,  i - -  Q t  ,,~ = P iQie ,~  - -  Qef ,  i. ( 1 )  
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